Problem 5096. Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{b+\sqrt[4]{a b^{3}}}+\frac{b}{c+\sqrt[4]{b c^{3}}}+\frac{c}{a+\sqrt[4]{c a^{3}}} \geq \frac{3}{2}
$$

Proposed by José Luis Díaz-Barrero, Barcelona, Spain
Solution by Ercole Suppa, Teramo, Italy
By weighted AM-GM inequality we have

$$
\begin{aligned}
& \frac{a}{b+\sqrt[4]{a b^{3}}}+\frac{b}{c+\sqrt[4]{b c^{3}}}+\frac{c}{a+\sqrt[4]{c a^{3}}} \geq \\
\geq & \frac{a}{b+\frac{1}{4} a+\frac{3}{4} b}+\frac{b}{c+\frac{1}{4} b+\frac{3}{4} c}+\frac{c}{a+\frac{1}{4} c+\frac{3}{4} a}= \\
= & \frac{4 a}{a+7 b}+\frac{4 b}{b+7 c}+\frac{4 c}{c+7 a}
\end{aligned}
$$

so it suffices to prove that

$$
\frac{a}{a+7 b}+\frac{b}{b+7 c}+\frac{c}{c+7 a} \geq \frac{3}{8}
$$

This inequality is equivalent to

$$
\frac{7\left(13 a^{2} b+13 b^{2} c+13 a c^{2}+35 a b^{2}+35 a^{2} c+35 b c^{2}-144 a b c\right)}{8(a+7 b)(b+7 c)(c+7 a)} \geq 0
$$

which is true. Indeed according AM-GM inequality we obtain

$$
\begin{gathered}
13 a^{2} b+13 b^{2} c+13 a c^{2} \geq 13 \cdot 3 \cdot \sqrt[3]{a^{3} b^{3} c^{3}}=39 a b c \\
35 a b^{2}+35 a^{2} c+35 b c^{2} \geq 35 \cdot 3 \cdot \sqrt[3]{a^{3} b^{3} c^{3}}=105 a b c
\end{gathered}
$$

and, summing these inequalities, we get

$$
13 a^{2} b+35 a b^{2}+35 a^{2} c-144 a b c+13 b^{2} c+13 a c^{2}+35 b c^{2} \geq 144 a b c
$$

This ends the proof. Clearly, equality occurs for $a=b=c$.

