
Problem 5096. Let a, b, c be positive real numbers. Prove that
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By weighted AM-GM inequality we have
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so it suffices to prove that

a

a + 7b
+

b

b + 7c
+

c

c + 7a
≥ 3

8

This inequality is equivalent to
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which is true. Indeed according AM-GM inequality we obtain

13a2b + 13b2c + 13ac2 ≥ 13 · 3 · 3
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a3b3c3 = 39abc

35ab2 + 35a2c + 35bc2 ≥ 35 · 3 · 3
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a3b3c3 = 105abc

and, summing these inequalities, we get

13a2b + 35ab2 + 35a2c− 144abc + 13b2c + 13ac2 + 35bc2 ≥ 144abc

This ends the proof. Clearly, equality occurs for a = b = c. �
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