Problem 5096. Let a, b, ¢ be positive real numbers. Prove that
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Proposed by José Luis Diaz-Barrero, Barcelona, Spain
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Solution by Ercole Suppa, Teramo, Italy

By weighted AM-GM inequality we have
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so it suffices to prove that
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This inequality is equivalent to

7 (13a2b + 13b%¢ + 13ac? + 35ab® + 35a2c + 35bc® — 144abc) -
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which is true. Indeed according AM-GM inequality we obtain
13a%b + 13b%c + 13ac® > 13- 3 - Va3b3c3 = 39abe

35ab® + 35ac + 35bc® > 35 - 3 - Vad3b3c3 = 105abe

and, summing these inequalities, we get
13a®b + 35ab”® + 35a°c — 144abe + 13b*c + 13ac® + 35bc* > 144abe

This ends the proof. Clearly, equality occurs for a = b = c. O



